A vacuum is a volume of space that is essentially empty of matter, such that its gaseous pressure is much less than atmospheric pressure.[1] The word comes from the Latin term for "empty," but in reality, no volume of space can ever be perfectly empty. A perfect vacuum with a gaseous pressure of absolute zero is a philosophical concept that is never observed in practice. Physicists often discuss ideal test results that would occur in a perfect vacuum, which they simply call "vacuum" or "free space" in this context, and use the term partial vacuum to refer to real vacuum. The Latin term in vacuo is also used to describe an object as being in what would otherwise be a vacuum.
The quality of a vacuum refers to how closely it approaches a perfect vacuum. The residual gas pressure is the primary indicator of quality, and is most commonly measured in units called torr, even in metric contexts. Lower pressures indicate higher quality, although other variables must also be taken into account. Quantum theory sets limits for the best possible quality of vacuum, predicting that no volume of space can be perfectly empty. Outer space is a natural high quality vacuum, mostly of much higher quality than can be created artificially with current technology. Low quality artificial vacuums have been used for suction for many years.
Vacuum has been a frequent topic of philosophical debate since Ancient Greek times, but was not studied empirically until the 17th century. Evangelista Torricelli produced the first laboratory vacuum in 1643, and other experimental techniques were developed as a result of his theories of atmospheric pressure. Vacuum became a valuable industrial tool in the 20th century with the introduction of incandescent light bulbs and vacuum tubes, and a wide array of vacuum technology has since become available. The recent development of human spaceflight has raised interest in the impact of vacuum on human health, and on life forms in general.Vacuum is useful in a variety of processes and devices. Its first widespread use was in the incandescent light bulb to protect the filament from chemical degradation. Its chemical inertness is also useful for electron beam welding, cold welding, vacuum packing and vacuum frying. Ultra-high vacuum is used in the study of atomically clean substrates, as only a very good vacuum preserves atomic-scale clean surfaces for a reasonably long time (on the order of minutes to days). High to ultra-high vacuum removes the obstruction of air, allowing particle beams to deposit or remove materials without contamination. This is the principle behind chemical vapor deposition, physical vapor deposition, and dry etching which are essential to the fabrication of semiconductors and optical coatings, and to surface science. The reduction of convection provides the thermal insulation of thermos bottles. Deep vacuum promotes outgassing which is used in freeze drying, adhesive preparation, distillation, metallurgy, and process purging. The electrical properties of vacuum make electron microscopes and vacuum tubes possible, including cathode ray tubes. The elimination of air friction is useful for flywheel energy storage and ultracentrifuges.
[edit] Vacuum driven machines
Vacuums are commonly used to produce suction, which has an even wider variety of applications. The Newcomen steam engine used vacuum instead of pressure to drive a piston. In the 19th century, vacuum was used for traction on Isambard Kingdom Brunel's experimental atmospheric railway. Vacuum brakes were once widely used on trains in the UK but, except on heritage railways, they have been replaced by air brakes.
Manifold vacuum can be used to drive accessories on automobiles. The best-known application is the vacuum servo, used to provide power assistance for the brakes. Obsolete applications include vacuum-driven windscreen wipers and fuel pumps.
[edit] Outer space
Main article: Outer space
Outer space is not a perfect vacuum, but a tenuous plasma awash with charged particles, electromagnetic fields, and the occasional star.
Outer space has very low density and pressure, and is the closest physical approximation of a perfect vacuum. It has effectively no friction, allowing stars, planets and moons to move freely along ideal gravitational trajectories. But no vacuum is truly perfect, not even in interstellar space where there are still a few hydrogen atoms per cubic centimeter. The deep vacuum of space could make it an attractive environment for certain industrial processes, for instance those that require ultraclean surfaces; however, it is much less costly to create an equivalent vacuum on Earth than to leave the Earth's gravity well.
Stars, planets and moons keep their atmospheres by gravitational attraction, and as such, atmospheres have no clearly delineated boundary: the density of atmospheric gas simply decreases with distance from the object. The Earth's atmospheric pressure drops to about 1 Pa (10-3 torr) at 100 km of altitude, the Kármán line which is a common definition of the boundary with outer space. Beyond this line, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the sun and the dynamic pressure of the solar wind, so the definition of pressure becomes difficult to interpret. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather. Astrophysicists prefer to use number density to describe these environments, in units of particles per cubic centimetre.
But although it meets the definition of outer space, the atmospheric density within the first few hundred kilometers above the Kármán line is still sufficient to produce significant drag on satellites. Most artificial satellites operate in this region called low earth orbit and must fire their engines every few days to maintain orbit. The drag here is low enough that it could theoretically be overcome by radiation pressure on solar sails, a proposed propulsion system for interplanetary travel. Planets are too massive for their trajectories to be affected by these forces, although their atmospheres are eroded by the solar winds.
All of the observable universe is filled with large numbers of photons, the so-called cosmic background radiation, and quite likely a correspondingly large number of neutrinos. The current temperature of this radiation is about 3 K, or -270 degrees Celsius or -454 degrees Fahrenheit.
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar